Chap.12 : Variables aléatoires réelles discrètes

Table des matières

1	Généralités sur les variables aléatoires discrètes						
	1.1	Défini	tion, propriétés	2			
	1.2	Loi d'	une VAR discrète	3			
	1.3	Foncti	ion de répartition	5			
	1.4	Foncti	ion d'une variable aléatoire	7			
2	Moments d'une VAR discrète						
	2.1	Espéra	ance	8			
	2.2		ace et écart type				
3	Lois discrètes usuelles						
	3.1	3.1 Lois discrètes finies					
		3.1.1	Loi de Bernoulli (ou indicatrice d'événement)	12			
		3.1.2	Loi binomiale (ou des tirages avec remise)	13			
		3.1.3	Loi uniforme	14			
	3.2	Lois discrètes infinies					
		3.2.1	Loi géométrique (ou loi d'attente d'un premier succès				
			dans un processus sans mémoire)	15			
		3.2.2	Loi de Poisson	17			
	3.3	Approximation de la loi binomiale par la loi de Poisson 18					

1 Généralités sur les variables aléatoires discrètes

1.1 Définition, propriétés

Définition 1.1. Soit Ω un ensemble. On appelle variable aléatoire réelle (VAR) toute application X définie sur Ω et à valeurs dans \mathbb{R} .

Soit X une variable aléatoire définie sur Ω :

- Si X(Ω) est un ensemble dénombrable, on dit que X est une variable aléatoire réelle discrète.
- Si X(Ω) est un ensemble fini, on dit que X est une variable aléatoire réelle finie.

 $X(\Omega)$ est l'ensemble des valeurs prises par X.

Remarque 1.2. Dans la définition rien n'impose que Ω soit un ensemble dénombrable mais en pratique il le sera toujours...

Exemple 1.3. Un joueur lance deux fois de suite un dé cubique équilibré et note les deux nombres obtenus sous la forme d'un couple : par exemple si le joueur obtient 2 puis 5, on note son résultat sous la forme (2,5).

L'univers de notre expérience est $\Omega = [1; 6] \times [1; 6]$.

On définit la variable aléatoire réelle discrète X qui, à chaque couple, associe la somme des deux nombres obtenus.

Ici, on a $X(\Omega) = \{2, 3, \dots, 12\}.$

Donc X est une variable aléatoire réelle finie.

Exemple 1.4. On effectue une succession de lancers indépendants d'un dé cubique équilibré jusqu'à obtenir 6 pour la première fois. Soit X le nombre de lancers effectués.

Tel que l'énoncé est posé, on ne sait pas trop comment décrire l'univers de notre expérience mais on peut tout de même donner très clairement $X(\Omega)$.

On a ici $X(\Omega) = \mathbb{N}^*$ (on ne prend pas en compte le fait de ne jamais obtenir 6) et donc X est une variable aléatoire réelle discrète infinie.

Définition 1.5. Soit X une variable aléatoire réelle discrète définie sur Ω . Pour toute partie J de \mathbb{R} , l'ensemble $\{\omega \in \Omega/X(\omega) \in J\}$ est un événement que l'on notera $[X \in J]$ ou $(X \in J)$. Cas particuliers :

• Lorsque $J = \{a\}$, afin d'alléger les notations, l'événement

$$[X \in \{a\}] = \{\omega \in \Omega / X(\omega) = a\} \text{ sera noté } [X = a].$$

• Lorsque $J =]-\infty; a]$, on note $[X \leq a]$.

• Lorsque J = [a; b[on note $[a \le X < b]$.

Exemple 1.6. Revenons au premier exemple où un joueur lance deux fois de suite un dé et X est la somme des deux chiffres obtenus. On a :

$$[X = 2] = \{(1,1)\}$$

$$[X = 4] = \{(1,3), (2,2), (3,1)\}$$

$$[X \le 5] = \{(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1)\}.$$

Dans le deuxième exemple, on a $[X=4]=\overline{S_1}\cap \overline{S_2}\cap \overline{S_3}\cap S_4$, où S_k désigne l'événement " obtenir 6 au $k^{i\`{e}me}$ lancer ".

Dans toute la suite de ce chapitre, (Ω, P) est un espace probabilisé et X une variable aléatoire réelle discrète définie sur cet espace.

On notera dorénavant $X(\Omega) = \{x_i / i \in I\}$ les valeurs prises par X, où I est une partie (finie ou non) de \mathbb{N} ou \mathbb{Z} .

1.2 Loi d'une VAR discrète

Définition 1.7. On appelle loi de probabilité de la variable aléatoire réelle discrète X (ou distribution de X) l'ensemble des couples (x_i, p_i) où :

$$x_i \in X(\Omega)$$
 et $p_i = P([X = x_i])$

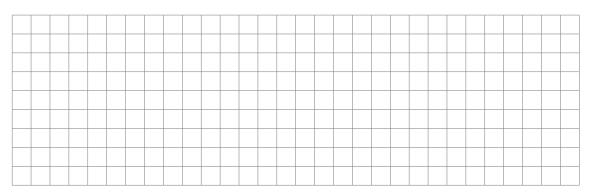
On note parfois P_X l'application définie sur $X(\Omega)$ par $P_X(x_i) = P([X = x_i])$.

Pour simplifier les notations, on notera $P([X = x_i]) = P(X = x_i)$.

- **Méthode 1.8.** Lorsque vous devez répondre à la question \ll déterminer la loi de $X \gg$, il faut commencer par donner clairement $X(\Omega)$. Puis pour chaque élément x_i de cet ensemble $X(\Omega)$ il faut donner $P(X = x_i)$.
 - Lorsque $X(\Omega)$ est fini et ne contient "pas trop" d'éléments, on peut présenter les résultats sous forme de tableau avec dans la première lique les valeurs de x_i et dans la deuxième lique $P(X = x_i)$.

Application 1.9. On reprend le deuxième exemple de ce chapitre : on lance un dé cubique équilibré jusqu'à obtenir 6 pour la première fois et X désigne le nombre de lancers effectués.

Donner la loi de X.



Proposition 1.10. La famille d'événements $([X=x_i])_{i\in I}$ est un système complet d'événements.

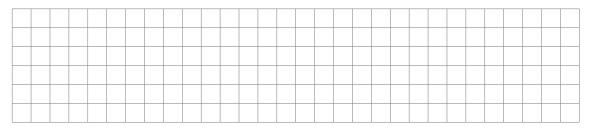
En particulier on a
$$\sum_{i \in I} P(X = x_i) = 1$$
.

Remarque 1.11. Cette propriété permet de vérifier la cohérence de vos résultats lorsque vous donnez la loi de X.

Comme $([X = x_i])_{i \in I}$ est un système complet d'événements, on peut appliquer la formule des probabilités totales pour n'importe quel événement A:

$$P(A) = \sum_{i \in I} P(X = x_i) P_{[X = x_i]}(A) = \sum_{i \in I} P([X = x_i] \cap A).$$

Application 1.12. Vérifier la cohérence de la loi obtenue dans l'application précédente.



Théorème 1.13. Caractérisation de la loi d'une variable aléatoire réelle discrète.

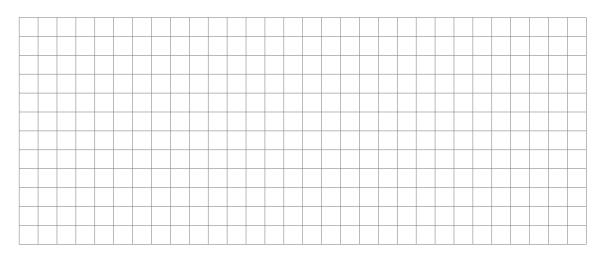
Soit $\{(x_i, p_i) / i \in I\}$ une partie de \mathbb{R}^2 , où $I = \mathbb{N}, \mathbb{Z}$ ou une de leurs parties. Si pour tout $i \in I, p_i \geqslant 0$ et si $\sum_{i \in I} p_i = 1$, alors il existe un espace probabilisé

 (Ω, P) et une VAR discrète X définie sur Ω tels que $\{(x_i, p_i) / i \in I\}$ est la loi de X.

Application 1.14. Pour une variable aléatoire réelle X telle que $X(\Omega) = \mathbb{Z} \setminus \{0; -1\}$, on pose :

$$\forall n \in \mathbb{Z} \setminus \{0; -1\}, \quad P(X = n) = \frac{1}{2n(n+1)}$$

Vérifier que ceci définit bien une loi de probabilité pour X.



1.3 Fonction de répartition

Définition 1.15. On appelle fonction de répartition de X l'application

$$F_X: \mathbb{R} \mapsto \mathbb{R}$$

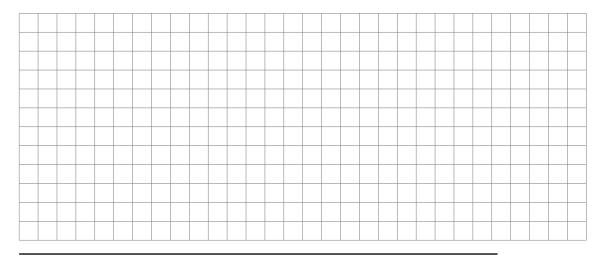
 $d\'efinie\ par$:

$$F_X(x) = P(X \leqslant x)$$

Proposition 1.16. La fonction de répartition d'une VAR discrète est une fonction en escalier.

Application 1.17. On considère toujours notre exemple de lancers successifs d'un dé cubique équilibré jusqu'à obtenir 6 et X la variable aléatoire réelle égale au nombre de lancers nécessaires.

- 1. Calculer plusieurs valeurs de F_X : $F_X(-2)$, $F_X(2,1)$, $F_X(2,99)$.
- 2. Déterminer la fonction de répartition.



Proposition 1.18. Soit F_X la fonction de répartition de la variable aléatoire réelle discrète X. Alors F_X vérifie les propriétés suivantes :

- 1. $\forall x \in \mathbb{R}, F_X(x) \in [0; 1]$
- 2. F_X est croissante.

Preuve:

Remarque 1.19. Une autre propriété intéressante, mais hors-programme, de la fonction de répartition est que :

$$\lim_{x \to -\infty} F_X(x) = 0 \ et \lim_{x \to +\infty} F_X(x) = 1$$

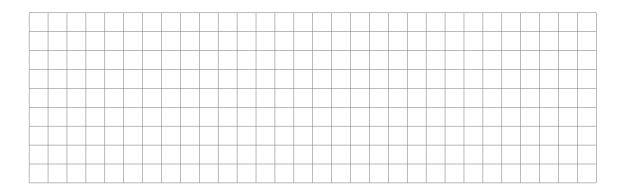
Théorème 1.20. Loi d'une VAR discrète à partir de sa fonction de répartition

On rappelle que $X(\Omega) = \{x_i / i \in I\}.$

Si les x_i sont rangés par ordre croissant, alors pour tout $i \in I$ tel que $i-1 \in I$ (on a donc $x_{i-1} < x_i$) on a:

$$P(X = x_i) = F_X(x_i) - F_X(x_{i-1})$$

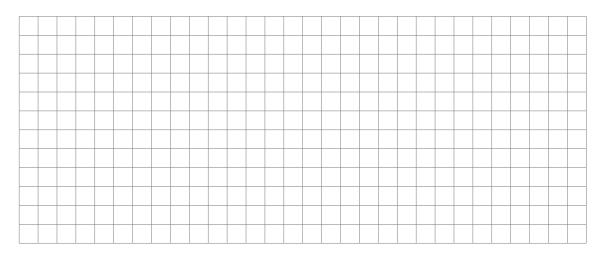
Preuve:



Application 1.21. Un sac contient 4 boules numérotés de 1 à 4.

On tire deux boules avec remise. On note X_1 le numéro de la première boule, X_2 le numéro de la seconde boule, et Y le plus grand des deux numéros obtenus.

Déterminer la loi de Y.



1.4 Fonction d'une variable aléatoire

Définition 1.22. Soient X une VAR discrète sur un espace probabilisé (Ω, P) et g une fonction définie sur $X(\Omega)$ à valeurs dans \mathbb{R} . On note g(X) l'application de Ω dans \mathbb{R} définie pour tout $\omega \in \Omega$ par :

$$g(X)(\omega) = g(X(\omega))$$

Proposition 1.23. Soient X une VAR discrète sur un espace probabilisé (Ω, P) et g une fonction définie sur $X(\Omega)$ à valeurs dans \mathbb{R} . Alors Y = g(X) est une VAR discrète définie sur Ω et telle que :

•
$$Y(\Omega) = \{g(x_i), i \in I\}$$

•
$$\forall y \in Y(\Omega)$$
, $P(Y = y) = \sum_{i/g(x_i)=y} P(X = x_i)$

Application 1.24. Soit X une VAR dont la loi est définie par :

valeur de X	-1	1	2
$probabilit\'e$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

7

Déterminer les lois de Y = 2X + 1 et de $Z = X^2$.



2 Moments d'une VAR discrète

2.1 Espérance

Définition 2.1. On dit que la VAR X admet une **espérance**, ou que l'espérance de X existe, lorsque $X(\Omega)$ est fini ou lorsque la série $\sum x_i P(X = x_i)$ est absolument convergente.

On appelle alors espérance de X, le réel :

$$E(X) = \sum_{i \in I} x_i P(X = x_i).$$

Remarque 2.2. • On note parfois : $E(X) = \sum_{x \in X(\Omega)}^{+\infty} xP(X = x)$.

- Lorsque X est une VAR discrète finie, X admet forcément une espérance
- Si pour tout $i \in I, a \leqslant x_i \leqslant b$ alors $a \leqslant E(X) \leqslant b$ (ceci permet de vérifier la cohérence de votre résultat).
- En particulier si pour tout $i, x_i \ge 0$ alors $E(X) \ge 0$.

- 1. Démontrer que X admet une espérance.
- 2. Déterminer la valeur de E(X).

Théorème 2.4. Théorème de transfert

Soit g une fonction définie sur $X(\Omega)$ et à valeurs dans \mathbb{R} .

Alors la variable aléatoire réelle g(X) admet une espérance si, et seulement si, la série $\sum_{x \in X(\Omega)} g(x) P(X = x)$ est absolument convergente et dans ce cas, on a :

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x) P(X = x).$$

Application 2.5. Reprendre l'exemple précédent et déterminer $E\left(X^{2}\right)$ si elle existe.



Corollaire 2.6. Linéarité de l'espérance.

Si X admet une espérance alors pour tout $(a,b) \in \mathbb{R}^2, aX+b$ admet une espérance et

$$E(aX + b) = aE(X) + b.$$

2.2 Variance et écart type

Proposition 2.7. Si $E(X^2)$ existe alors E(X) existe.

ATTENTION!!! La réciproque de cette propriété est fausse.

Exemple 2.8. On considère la VAR X dont la loi est donnée par $X(\Omega) = \mathbb{N}^*$ et pour tout $n \in \mathbb{N}^*$:

$$P(X=n) = \frac{1}{\lambda n^3} \ avec \ \lambda = \sum_{k=1}^{+\infty} \frac{1}{k^3}.$$

On a $nP(X=n) = \frac{1}{\lambda n^2} \ donc \ \sum |nP(X=n)| \ converge \ et \ E(X) \ existe.$ De plus $n^2P(X=n) = \frac{1}{\lambda n} \ donc \ \sum |n^2P(X=n)| \ diverge \ et \ E(X^2) \ n$ 'existe pas.

Définition 2.9. Soit X une VAR discrète telle que X^2 admet une espérance. On appelle **variance** de X le réel :

$$V(X) = E(X^2) - (E(X))^2$$
 Formule de Kænig-Huygens.

De plus, lorsque V(X) existe, on appelle écart-type de X le réel :

$$\sigma(X) = \sqrt{V(X)}$$
.

Remarque 2.10. • Si X n'admet pas d'espérance, X ne peut pas admettre de variance.

• Il existe une autre définition de la variance (au programme de TSI1) :

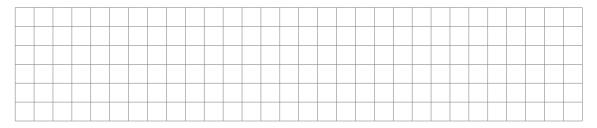
$$V(X) = E((X - E(X))^{2}).$$

Les deux définitions sont évidemment équivalentes.

La variance est donc la moyenne du carré de la distance entre les valeurs de X et la moyenne de X. Ainsi, la variance est une **mesure** de dispersion de X par rapport à E(X).

Application 2.11. Soit encore X le nombre de lancers de dé jusqu'à obtenir 6 pour la première fois.

X admet-elle une variance? Si c'est le cas, la calculer.



Proposition 2.12. Si X est une VAR discrète admettant une variance alors pour tout $(a,b) \in \mathbb{R}^2$, aX + b admet une variance et :

$$V(aX + b) = a^2V(X)$$

De plus : $\sigma(aX + b) = |a| \sigma(X)$.

Théorème 2.13. Inégalité de Bienaymé-Tchebychev

Soit X une variable aléatoire réelle discrète telle que X^2 admet une espérance. Alors :

$$\forall \varepsilon > 0, \quad P(|X - E(X)| \geqslant \varepsilon) \leqslant \frac{V(X)}{\varepsilon^2}$$

Preuve:

Comme X^2 admet une espérance, X admet une variance et une espérance. On pose $X(\Omega) = \{x_i, i \in I\}$ et $p_i = P(X = x_i)$. Il est plus facile, pour cette démonstration, d'utiliser la définition de la variance vue en TSI 1.

On sait que $V(X)=E\left((X-E(X))^2\right)$. Donc d'après le théorème de transfert :

$$V(X) = E((X - E(X))^{2}) = \sum_{i \in I} (x_{i} - E(X))^{2} p_{i}$$

Et de plus:

$$P(|X - E(X)| \ge \varepsilon) = \sum_{j \in J} p_j$$
 où $J = \{j \in I / |x_j - E(X)| \ge \varepsilon\}$

On peut donc écrire:

$$V(X) = \sum_{j \in J} (x_j - E(X))^2 p_j + \sum_{i \notin J} (x_i - E(X))^2 p_i$$

$$\geqslant \sum_{j \in J} (x_j - E(X))^2 p_j$$

$$\geqslant \varepsilon^2 \sum_{j \in J} p_j$$

$$\geqslant \varepsilon^2 P(|X - E(X)| \geqslant \varepsilon)$$

$$\Leftrightarrow P(|X - E(X)| \geqslant \varepsilon) \leqslant \frac{V(X)}{\varepsilon^2}$$

Remarque 2.14. • On utilise souvent cette inégalité avec l'événement contraire. On obtient alors :

$$P(|X - E(X)| < \varepsilon) \geqslant 1 - \frac{V(X)}{\varepsilon^2}$$

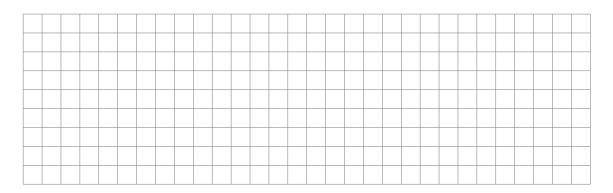
• Cette propriété exprime le fait que la probabilité que X prenne des valeurs situées à une distance supérieure à ε de sa moyenne, est majorée par $\frac{V(X)}{\varepsilon^2}$.

On retrouve ici le fait que la variance est une mesure de dispersion.

Application 2.15. Le taux moyen de glycémie dans une population est de $1 \text{ g} \cdot L^{-1}$ avec une variance de 0,1.

Une personne présente un taux X critique si son taux ne se situe pas dans l'intervalle]0,5;1,5[.

Estimer la probabilité qu'une personne présente un taux critique.



3 Lois discrètes usuelles

3.1 Lois discrètes finies

3.1.1 Loi de Bernoulli (ou indicatrice d'événement)

On considère une expérience aléatoire $\mathscr E$ et A un événement lié à cette expérience tel que P(A)=p.

On définit alors la variable aléatoire X en posant X=1 si A est réalisé et X=0 sinon.

X est une VAR qui prend les valeurs 0 et 1 avec les probabilités :

$$P(X = 0) = 1 - p$$
 et $P(X = 1) = p$.

Définition 3.1. Soit $p \in [0; 1]$. On dit qu'une VAR X suit la **loi de Bernoulli** de paramètre p si :

$$X(\Omega) = \{0; 1\}$$

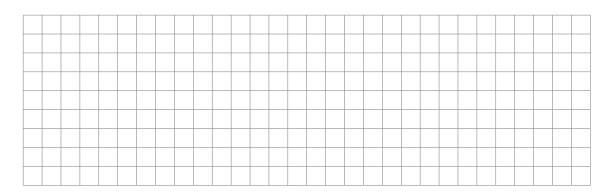
$$P(X = 0) = 1 - p \quad et \quad P(X = 1) = p$$

On note $X \hookrightarrow \mathcal{B}(p)$.

Proposition 3.2. $Si\ X$ suit une loi de Bernoulli de paramètre p alors :

$$E(X) = p$$
 et $V(X) = p(1-p)$.

Preuve:



3.1.2 Loi binomiale (ou des tirages avec remise)

On considère une expérience $\mathscr E$ et on considère un événement A lié à $\mathscr E$ tel que P(A)=p.

On suppose que l'on effectue n fois l'expérience $\mathscr E$ dans les mêmes conditions (les expériences sont indépendantes) et on considère X le nombre de fois où A est réalisé au cours de ces n expériences identiques. X prend donc les valeurs $0, 1, \ldots, n$. Soit $k \in [0; n]$.

On cherche à calculer P(X=k) c'est-à-dire la probabilité que A soit réalisé k fois exactement.

Parmi les n expériences, il y a $\binom{n}{k}$ façons de placer les k fois où A est réalisé.

Chacun de ces $\binom{n}{k}$ événements est réalisé avec la probabilité $p^k(1-p)^{n-k}$.

On a donc :
$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
.

Définition 3.3. Soit $p \in [0;1]$ et $n \in \mathbb{N}$. On dit que la VAR X suit la **loi** binomiale de paramètres n et p si :

$$X(\Omega) = \{0, 1, \dots, n\} = \llbracket 0; n \rrbracket$$

$$\forall k \in \llbracket 0; n \rrbracket \quad P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

On note $X \hookrightarrow \mathcal{B}(n,p)$.

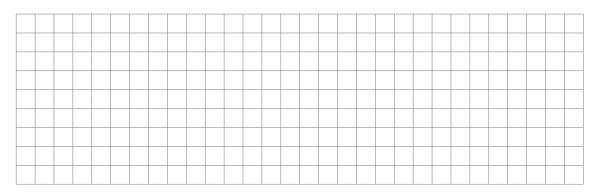
Une VAR qui suit une loi binomiale est une VAR qui "compte" le nombre de réalisations d'un événement A de probabilité p au cours de n expériences identiques et indépendantes.

Application 3.4. On procède à n lancers d'un dé équilibré dont les 6 faces sont numérotées de 1 à 6.

On note X la variable aléatoire égale au nombre de fois où l'on obtient un numéro inférieur ou égal à 2.

13

Quelle est la loi de X?



Méthode 3.5. Pour justifier qu'une variable aléatoire donnée suit une loi binomiale, plusieurs "mots-clés" sont nécessaires :

- une succession de n expériences;
- les expériences doivent être identiques et indépendantes;
- X doit désigner le nombre de fois où un événement A de probabilité p est réalisé.

Si ces trois points sont vérifiés, vous pouvez affirmer sans calculs que X suit la loi binomiale de paramètres n et p.

Proposition 3.6. Soit X une VAR qui suit la loi $\mathcal{B}(n,p)$. Alors on a :

$$E(X) = np$$
 et $V(X) = np(1-p)$.

3.1.3 Loi uniforme

Définition 3.7. Soit $n \in \mathbb{N}^*$. On dit que X suit la **loi uniforme** sur [1; n] si :

$$X(\Omega) = [1; n]$$

$$\forall k \in [1;n], \quad P(X=k) = \frac{1}{n}.$$

On note $X \hookrightarrow \mathscr{U}(\llbracket 1; n \rrbracket)$.

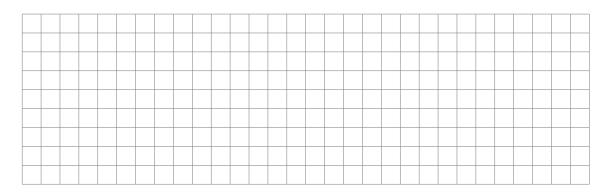
Remarque 3.8. Lorsque X suit une loi uniforme, tous les événements [X=k] sont équiprobables.

On peut ainsi étendre cette notion de loi uniforme sur n'importe quel ensemble fini.

Proposition 3.9. Soit X une VAR qui suit la loi uniforme sur [1; n]. Alors:

$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2 - 1}{12}$

Preuve:



3.2 Lois discrètes infinies

3.2.1 Loi géométrique (ou loi d'attente d'un premier succès dans un processus sans mémoire)

On considère une expérience aléatoire $\mathscr E$ et un événement A lié à $\mathscr E$ tel que P(A)=p.

On répète l'expérience $\mathscr E$ dans des conditions identiques (les expériences sont indépendantes) et on appelle X le nombre d'épreuves effectuées jusqu'à ce que A soit réalisé pour la première fois.

On note A_i l'événement "A est réalisé lors de la $i^{\rm eme}$ expérience".

Soit R l'événement "A ne se réalise jamais" .

On peut montrer que P(R) = 0.

On peut donc considérer que X prend ses valeurs dans \mathbb{N}^* .

De plus pour tout $k \in \mathbb{N}^*$:

$$P(X = k) = P\left(\overline{A_1} \cap \overline{A_2} \cap \ldots \cap \overline{A_{k-1}} \cap A_k\right) = (1-p)^{k-1}p$$

Définition 3.10. Soit $p \in]0;1[$. On dit qu'une VAR X suit la loi géométrique de paramètre p si :

$$X(\Omega) = \mathbb{N}^*$$

$$\forall k \in \mathbb{N}^*, \quad P(X = k) = (1 - p)^{k - 1} p.$$

On note $X \hookrightarrow \mathcal{G}(p)$.

Exemple 3.11. L'exemple que nous suivons depuis le début de ce chapitre est un exemple de loi géométrique.

En effet, X désignait le rang d'apparition pour la première fois de l'événement " obtenir un 6" qui est de probabilité $\frac{1}{6}$) au cours d'une succession illimitée d'expériences identiques et indépendantes.

Sans aucun calcul, nous pouvons maintenant affirmer que X suit la loi géométrique de paramètre $\frac{1}{6}$.

Méthode 3.12. Pour justifier qu'une variable aléatoire donnée suit une loi géométrique, plusieurs " mots-clés" sont nécessaires :

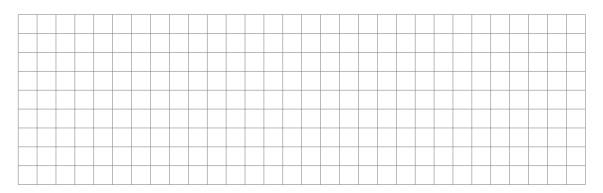
- une succession illimitée d'expériences;
- les expériences doivent être identiques et indépendantes;
- X doit désigner le rang d'apparition pour la première fois d'un événement A de probabilité p.

Si ces trois points sont vérifiés, nous pouvons affirmer sans calculs que X suit la loi géométrique de paramètre p.

Application 3.13. Une urne contient 3 jetons blancs et 2 noirs.

On effectue dans cette urne des tirages successifs avec remise de chaque jeton après tirage et on note X le nombre de tirages nécessaires pour obtenir pour la première fois un jeton blanc.

Quelle est la loi de X?



Proposition 3.14. Soit X une VAR qui suit la loi géométrique $\mathscr{G}(p)$. Alors X admet une espérance et une variance, et :

$$E(X) = \frac{1}{p}$$
 et $V(X) = \frac{1-p}{p^2}$

Preuve:

• Sous réserve de convergence absolue de la série utilisée, on sait que

$$E(X) = \sum_{n=1}^{+\infty} nP(X=n) = \sum_{n=1}^{+\infty} n(1-p)^{n-1}p = p\sum_{n=1}^{+\infty} n(1-p)^{n-1}$$

A l'aide du critère de D'Alembert on montre facilement que cette série est absolument convergente car $(1-p) \in]0;1[.X]$ admet bien une espérance.

On sait que pour tout
$$x \in]-1; 1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n.$$

D'après le théorème de dérivation terme à terme des séries entières,

on a donc
$$\frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}$$
.

On en déduit donc que $E(X) = p \times \frac{1}{(1-(1-p))^2} = \frac{1}{p}$.

• Calculons tout d'abord $E(X^2)$ (en montrant en même temps son existence).

Sous réserve de convergence absolue de la série utilisée, on sait que :

$$E(X^{2}) = \sum_{n=1}^{+\infty} n^{2} P(X=n) = \sum_{n=1}^{+\infty} n^{2} (1-p)^{n-1} p = p \sum_{n=1}^{+\infty} n^{2} (1-p)^{n-1}$$

A l'aide du critère de D'Alembert on montre facilement que cette série est absolument convergente car $(1-p) \in]0; 1$ [. X^2 admet bien une espérance, ce qui signifie que X admet une variance.

En dérivant de nouveau terme à terme la dernière série entière évoquée, on obtient :

$$\sum_{n=1}^{+\infty} n(n-1)x^{n-2} = \frac{2}{(1-x)^3} \Leftrightarrow \sum_{n=1}^{+\infty} n^2 x^{n-2} = \frac{2}{(1-x)^3} + \sum_{n=1}^{+\infty} nx^{n-2}$$
$$\Leftrightarrow \sum_{n=1}^{+\infty} n^2 x^{n-1} = \frac{2x}{(1-x)^3} + \frac{1}{(1-x)^2} = \frac{x+1}{(1-x)^3}$$

On a donc $E(X^2) = p \frac{2-p}{p^3}$. On en déduit ainsi que :

$$V(X) = E(X^2) - E(X)^2 = p\frac{2-p}{r^3} - \frac{1}{r^2} = \frac{p-p^2}{r^3} = \frac{1-p}{r^2}.$$

3.2.2 Loi de Poisson

Définition 3.15. Soit $\lambda > 0$. On dit qu'une VAR X suit une **loi de Poisson** de paramètre λ si :

$$X(\Omega) = \mathbb{N}$$
 et $\forall n \in \mathbb{N}$, $P(X = n) = \frac{e^{-\lambda} \lambda^n}{n!}$

On note $X \hookrightarrow \mathscr{P}(\lambda)$.

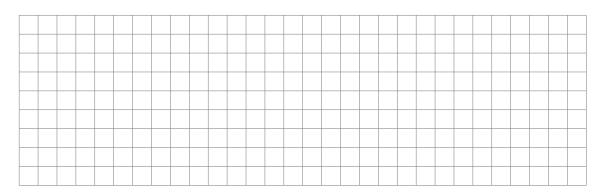
On ne dispose pas ici d'une situation concrète simple pour illustrer la loi de Poisson.

Une variable aléatoire qui suit une loi de Poisson sera toujours introduite sous la forme "soit X une VAR qui suit une loi de Poisson".

Proposition 3.16. Soit X une VAR qui suit la loi $\mathcal{P}(\lambda)$. Alors X admet une espérance et une variance, et on a:

$$E(X) = \lambda$$
 et $V(X) = \lambda$

Preuve:



3.3 Approximation de la loi binomiale par la loi de Poisson

Théorème 3.17. Soit λ un réel strictement positif et $(X_n)_{n\in\mathbb{N}}$ une suite de VAR discrètes telles que X_n suit la loi binomiale de paramètre (n, p_n) . Si $\lim np_n = \lambda$ alors pour tout $k \in \mathbb{N}$, on a :

$$\lim_{n \to +\infty} P(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

On dit que la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une VAR qui suit la loi de Poisson. (vocabulaire hors-programme)

En pratique:

On considère que lorsque $n \ge 50, p \le 0, 1$ et $np \le 15$, on peut approcher la loi $\mathcal{B}(n,p)$ par la loi $\mathcal{P}(np)$.

On dit que la loi de Poisson est la loi des événements rares (elle approche le tirage de n boules avec remise dans une urne contenant des boules blanche en proportion égale à p qui est faible).

Exemple 3.18. Soit X une variable aléatoire suivant la loi binomiale $\mathcal{B}(100; 0, 05)$. Nous allons calculer P(X = 2).

- Calcul exact: $P(X=2) = {100 \choose 2} (0,05)^2 (0,95)^{98} \approx 0,0812$
- Calcul approché : on approche la loi $\mathcal{B}(100;0,05)$ par la loi $\mathcal{P}(5)$

$$P(X=2) \approx \frac{5^2}{2!} e^{-5} \approx 0,0843$$

Remarque 3.19. Dans l'exemple ci-dessus, aucun problème pour faire le calcul exact.

Mais si on augmente encore la valeur de n et de k (pour le calcul de P(X = k)), le calcul des coefficients binomiaux devient très lourd et c'est pourquoi la loi de Poisson est parfois plus facile à manipuler.